Abstract
Solar broadband heating directly drives the atmospheric and ocean circulations, and is largely determined by cloud spatial 3-diminesional (3D) structures. To study the cloud 3D effects on radiation, a 3D broadband Monte-Carlo radiative transfer model, along with an Independent Pixel/Column Approximation (IPA) method, is used to simulate radiation and heating rate of three typical cloud fields generated by cloud resolving models (CRM). A quantitative and statistical estimation of cloud 3D effects has been developed to investigate the impact of cloud 3D structures on both heating rate strength, STD_Bias, and vertical distribution, CorrCoef. The cloud 3D structures affect some clouds more in heating rate strength and others more in vertical distribution. It is crucial to use the combination of CorrCoef and STD_Bias for better quantitative evaluation of the 3D effects. Furthermore, there is no simple way to define a critical resolution (or average radius), within which the IPA heating rate profiles closely represent the true 3D heating rate profiles. The critical radius (or resolution) strongly depends on solar incident angle as well as cloud vertical distribution. Also, the critical radii for clear-sky columns are larger than for cloudy columns, although the corresponding STD_Bias for clear-sky columns are smaller than for cloudy columns. Analysis based on two different statistical average methods illustrates that the cloud 3D effects due to the dimensionality difference between the 3D clouds (circle average) and 2D clouds (line average) significantly impact on the heating rate profiles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Quantitative Spectroscopy and Radiative Transfer
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.