Abstract

Thermoregulatory studies often investigate thermal responses without considering the influences of clothing. These studies have expanded our understanding of basic human responses to various environmental conditions. However, human thermoregulation is variable and modified by heat transfer interactions between skin surface area, clothing and environment. Much of the original work on the influence of clothing on work performance was the result of ergonomic concerns. Currently, the importance of clothing and the influence of new clothing technology aimed at minimising thermal stress has spawned a new interest. For hot climates, new fabrics have been developed with improved wicking properties to keep the wearer cooler and drier, and to enhance heat transfer from the body while providing greater comfort. In contrast, the challenge of cold environments requires a different approach to clothing, which tries to minimise the free movement of air and water along the skin surface of the body. The materials used should also be able to absorb radiant heat from the environment and be nonconductive. In a cold climate, the wearer needs to balance the need for a clothing barrier for warmth with the potential for accumulating too much heat as the result of metabolic heat production from exercise. To counteract this potential problem, it is suggested that cold-weather clothing be worn in layers that can be removed during exercise and replaced during less active periods. Protective clothing for firefighters, hazardous waste workers and astronauts, and athletic protective gear, have specialised design requirements which may be influenced by considerations, for example, of environmental conditions, garment weight, the need for durability, impact forces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.