Abstract
We study various properties of closed relativistic strings. In particular, we characterize their closure under uniform convergence, extending a previous result by Y. Brenier on graph-like unbounded strings, and we discuss some related examples. Then we study the collapsing profile of uniformly convex planar strings which start with zero initial velocity, and we obtain a result analogous to the well-known theorem of Gage and Hamilton for the curvature flow of plane curves. We conclude the paper with the discussion of an example of weak Lipschitz evolution starting from the square in the plane.
Paper version not known (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have