Abstract

Embedded soft sensors can significantly impact the design and control of soft-bodied robots. Although there have been considerable advances in technology behind these novel sensing materials, their application in real-world tasks, especially in closed-loop control tasks, has been severely limited. This is mainly because of the challenge involved with modeling a nonlinear time-variant sensor embedded in a complex soft-bodied system. This article presents a learning-based approach for closed-loop force control with embedded soft sensors and recurrent neural networks (RNNs). We present learning protocols for training a class of RNNs called long short-term memory (LSTM) that allows us to develop accurate and robust state estimation models of these complex dynamical systems within a short period of time. Using this model, we develop a simple feedback force controller for a soft anthropomorphic finger even with significant drift and hysteresis in our feedback signal. Simulation and experimental studies are conducted to analyze the capabilities and generalizability of the control architecture. Experimentally, we are able to develop a closed-loop controller with a control frequency of 25 Hz and an average accuracy of 0.17 N. Our results indicate that current soft sensing technologies can already be used in real-world applications with the aid of machine learning techniques and an appropriate training methodology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.