Abstract

A family of covalently bonded hybrid compounds composed of Anderson type polyoxometalate (POM) moiety and porphyrin moiety have been synthesized and thoroughly characterized. The compounds all show remarkable nonlinear reverse saturable absorption and self-defocusing effect at 532 nm with a pulse duration τ = 6 ns, rendering them promising candidate materials for device applications in photonics and optoelectronics. More importantly, it is found that the hybrid wherein POM is coupled covalently to porphyrin through shorter bridge has an NLO response superior to the hybrid wherein POM is bonded via longer bridge to porphyrin, and the hybrid having two porphyrins connected to POM shows more enhancement than the hybrid having single porphyrin fused to POM. Disclosure of the inherent structure–property relationship is expected to be instructive for exploration of new porphyrin-POM based NLO materials. Meantime, the hybrid compounds have optical-limiting thresholds lower than 1.0 J/cm2, implying their high pot...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.