Abstract

In the last two decades, several properties of operators that are weaker than monotonicity have received attention by researchers from many areas including mathematical economics, with the goal to develop new tools applicable in convex analysis and related topics. This paper puts in perspective notions that are extensions of monotoniticity but not beyond quasimonotonicity like pseudomonotonicity, semistrict quasimonotonicity, strict quasimonotonicity and proper quasimonotonicity, and discusses systematically when the sum of two operators satisfying one of those properties, inherits the same property. The case of properly quasimonotone operators deserves a special attention since this notion, being stronger than quasimonotonicity, suffices to obtain many results, including the solvability of variational inequality problems. Several examples showing the optimality in some sense of our results, are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.