Abstract

The development of magnetically-actuated micro-robots is of great interest for emerging medical applications due to their inherent safety, low cost to manufacture, and flexibility. In many practical applications, precise control over the motion of the microrobots is a strong requirement. In these contexts, closed-loop control is a practical tool to adjust the microrobots' control inputs in real time. In this work, we describe a process to quickly fabricate a large number of heterogeneous microrobots using colloidal synthesis. We simultaneously develop a closed-loop control law that drives the microrobots to a desired formation in the plane. In addition, we prove that heterogeneity in the microrobot dynamics is necessary to generate arbitrary formations. Finally, using experimental data, we show in simulation that microrobots can be driven to any arbitrary formation using our control law.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.