Abstract

Developing microwave systems for biomedical applications requires accurate dielectric properties of biological tissues for reliable modeling before prototyping and subject testing. Dielectric properties of tissues decrease with age due to the change in their water content, but there are no detailed age-dependent data, especially for young tissue-like newborns, in the literature. In this article, an age-dependent formula to predict the dielectric properties of biological tissues was derived. In the proposed method, the variation of water concentration in each type of tissue as a function of age was used to calculate its relative permittivity and conductivity. The derived formula shows that the concentration of water in each tissue type can be modeled as a negative exponential function of age. The dielectric properties of each tissue type can then be calculated as a function of the dielectric properties of water and dielectric properties of the organ forming the tissue and its water concentration. The derived formula was used to generate the dielectric properties of several types of human tissues at different ages using the dielectric properties of a human adult. Moreover, the formula was validated on pig tissues of different ages. A close agreement was achieved between the calculated and measured data with a maximum difference of only 2%. Bioelectromagnetics. 38:474-481, 2017. © 2017 Wiley Periodicals, Inc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.