Abstract
In response to the government’s heightened focus on recycling and remanufacturing, as well as the growing awareness among consumers about environmental security, manufacturing companies are currently required to establish efficient closed-loop supply chain networks in order to improve their socialreputation and competitive advantage. This study investigates the optimization of a Closed-Loop Supply Chain (CLSC) network that involves multiple products, multiple periods, and uncertain returns, which also considers the influence of many factors, such as carbon cap-and-trade policy, raw part procurement discounts, and facility capacity constraints, on the supply chain. Simultaneously, customer demand is sensitive to both product pricing and product greenness, and product greenness can be improved by investing in emission reduction technologies. To address the uncertainty in the returns, we propose a two-stage distributionally robust chance-constrained optimization model, which is transformed into a mixed integer linear programming model. To efficiently address the complex problem, we designan improved Benders decomposition (IBD) algorithm. The experimental results confirm that the IBD algorithm has significant advantages when compared to the Benders decomposition algorithm. Additionally, this study conducted a sensitivity analysis on key parameters and proposed operation suggestions of practical importance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.