Abstract

Epoxy resin thermosets (ERTs) are an important class of polymeric materials. However, owing to their highly cross-linked nature, they suffer from poor recyclability, which contributes to an unacceptable level of environmental pollution. There is a clear need for the design of inherently recyclable ERTs that are based on renewable resources. We present the synthesis and closed-loop recycling of a fully lignocellulose-derivable epoxy resin (DGF/MBCA), prepared from dimethyl ester of 2,5-furandicarboxylic acid (DMFD), 4,4'-methylenebis(cyclohexylamine) (MBCA), and glycidol, which displays excellent thermomechanical properties (a glass transition temperature of 170°C, and a storage modulus at 25°C of 1.2 gigapascals). Notably, the material undergoes methanolysis in the absence of any catalyst, regenerating 90% of the original DMFD. The diamine MBCA and glycidol can subsequently be reformed by acetolysis. Application and recycling of DGF/MBCA in glass and plant fiber composites are demonstrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call