Abstract

A photovoltage closed-loop servo control model of lead lanthanum zirconate titanate ceramic is proposed for a photovoltaic-electrostatic-driven system in this article. The control equations of the proposed servo control model are derived based on the mathematical model of lead lanthanum zirconate titanate with coupled multi-physics fields. The parameters of photovoltage of lead lanthanum zirconate titanate ceramic during the illumination phase and light-off phase are identified through the static experiment. Then, photovoltage response of lead lanthanum zirconate titanate ceramic with simple on–off control strategy is numerically simulated based on the control equations presented in this article. After that, the closed-loop photovoltage control experiment based on single lead lanthanum zirconate titanate ceramic is carried out. The simulation and experimental results show that the photovoltage can be successfully controlled by switching the ultraviolet light with an optical shutter. The control strategy can be applied in the photovoltaic-electrostatic-driven servo system to achieve the target degree of angular or displacement deflection. In addition, closed-loop photovoltage control experiment of lead lanthanum zirconate titanate bimorph irradiated by double ultraviolet light is carried out to equip the system with the capacity of reverse voltage output.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.