Abstract
A closed-loop multiple-input multiple-output (MIMO) transceiver combining space–time multilayer precoding and transmit selection is proposed. The transmitter design consists in optimizing the number of space–time transmit layers as well as the partitioning of the transmit antennas into the selected number of space–time layers. We show that this problem can be translated into jointly selecting, from a finite alphabet, two transmit matrices that define, respectively, the multilayer space–time code and the antenna mapping to be used. The parametrization of the proposed design takes into account all possible space–time layering schemes in between spatial multiplexing and transmit diversity for a fixed number of transmit antennas and linear precoder structure. Sufficient conditions for solution existence using a linear space–time zero forcing receiver are discussed. Simulation results compare the proposed transceiver with some MIMO schemes and corroborate the benefits of closed-loop multilayer selection in terms of capacity and bit error rates. Copyright © 2012 John Wiley & Sons, Ltd.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have