Abstract

This paper presents a hardware and software system to implement the task space control of an MR-conditional robot by integrating inductively coupled wireless coil based tracking feedback into the control loop. The main motivation of this work is to increase the accuracy performance and address the system uncertainties in the practical scenarios. We present the MR-conditional robot hardware design, wireless tracking method, and custom-designed communication software for real-time tracking data transfer. Based on these working principles, we fabricate the robot platform and evaluate the complete system with respect to various performance indices, i.e. data communication speed, targeting accuracy, tracking coil resolution, image quality, temperature variation, and task space control accuracy for static and dynamic targeting inside MRI scanner. The in-scanner targeting results show that the MR-conditional robot with wireless tracking coil feedback achieves the targeting error of 0.17 ± 0.08mm, while the error calculated from the joint space optical encoder feedback is 0.68 ± 0.19mm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.