Abstract

When individuals are paralyzed from injury or damage to the brain, upper body movement and function can be compromised. While the use of body motions to interface with machines has shown to be an effective noninvasive strategy to provide movement assistance and to promote physical rehabilitation, learning to use such interfaces to control complex machines is not well understood. In a five session study, we demonstrate that a subset of an uninjured population is able to learn and improve their ability to use a high-dimensional Body-Machine Interface (BoMI), to control a robotic arm. We use a sensor net of four inertial measurement units, placed bilaterally on the upper body, and a BoMI with the capacity to directly control a robot in six dimensions. We consider whether the way in which the robot control space is mapped from human inputs has any impact on learning. Our results suggest that the space of robot control does play a role in the evolution of human learning: specifically, though robot control in joint space appears to be more intuitive initially, control in task space is found to have a greater capacity for longer-term improvement and learning. Our results further suggest that there is an inverse relationship between control dimension couplings and task performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.