Abstract

This paper presents the experimental evaluation of a coordinated control system for a robot and robot-driven shape memory alloy (SMA) actuated smart flexible needle capable of following a curved path for percutaneous intervention. The robot driving the needle is considered the outer loop and the non-linear SMA actuated flexible needle system comprises the inner loop. The two feedback control loops are coordinated in such a way that the robot drives the needle while monitoring the needle's actual deflection against a preplanned ideal trajectory, so that the needle tip reaches the target location within an acceptable accuracy. In air and in water experimental results are presented to validate the ability of the proposed coordinated controller to track the overall desired trajectory which includes the combined trajectory of the robot driver and the needle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.