Abstract
Let $M$ be an oriented three-dimensional manifold of constant sectional curvature $-1$ and with positive injectivity radius, and $T^1M$ its tangent sphere bundle endowed with the canonical (Sasaki) metric. We describe explicitly the periodic geodesics of $T^1M$ in terms of the periodic geodesics of $M$: For a generic periodic geodesic $(h,v)$ in $T^1M$, $h$ is a periodic helix in $M$, whose axis is a periodic geodesic in $M$; the closing condition on $(h,v)$ is given in terms of the horospherical radius of $h$ and the complex length (length and holonomy) of its axis. As a corollary, we obtain that if two compact oriented hyperbolic three-manifolds have the same complex length spectrum (lengths and holonomies of periodic geodesics, with multiplicities), then their tangent sphere bundles are length isospectral, even if the manifolds are not isometric.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.