Abstract

This note describes an observation connecting Riemannian manifolds of constant sectional curvature with a particular class of Lie superalgebras. Specifically, it is shown that the structural equations of a space M with constant sectional curvature, of one variety or another, nearly coincide with some identities satisfied by tensors which can be used to construct some specific families of Lie superalgebras. In particular, one obtains either osp(n,2), spl(n,2), or osp(4,2n) if the Riemannian manifold has constant curvature, constant holomorphic curvature or constant quaternion-holomorphic curvature, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.