Abstract

Properties of quantum systems can be estimated using classical shadows, which implement measurements based on random ensembles of unitaries. Originally derived for global Clifford unitaries and products of single-qubit Clifford gates, practical implementations are limited to the latter scheme for moderate numbers of qubits. Beyond local gates, the accurate implementation of very short random circuits with two-local gates is still experimentally feasible and, therefore, interesting for implementing measurements in near-term applications. In this work, we derive closed-form analytical expressions for shadow estimation using brickwork circuits with two layers of parallel two-local Haar-random (or Clifford) unitaries. Besides the construction of the classical shadow, our results give rise to sample-complexity guarantees for estimating Pauli observables.We then compare the performance of shadow estimation with brickwork circuits to the established approach using local Clifford unitaries and find improved sample complexity in the estimation of observables supported on sufficiently many qubits.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.