Abstract

For a large class of second order Lagrangian dynamics, one may reformulate the problem of finding periodic solutions as a problem in solving second-order recurrence relations satisfying a twist condition. We project periodic solutions of such discretized Lagrangian systems onto the space of closed braids and apply topological techniques. Under this reformulation, one obtains a gradient flow on the space of braided piecewise linear immersions of circles. We derive existence results for closed braided solutions using Morse–Conley theory on the space of singular braid diagrams.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.