Abstract
Continuous habitability of a planet is a critical condition for advanced forms of life to appear, but it can be endangered by astronomical events such as stellar encounters. The purpose of this study is to analyze close stellar encounters able to change planetary orbits initially in circumstellar habitable zones and to investigate the expected encounter rates in a variety of stellar environments. Using gravitational simulations for three-body systems, this study analyzed the dependencies of encounter impact-parameters with kinematic, geometric, and habitability parameters of the system. We also used kinematic properties of various stellar regions and estimated encounter rates of the events. The expected number of threatening stellar encounters in the Solar neighborhood is [Formula: see text] in 4 billion years, while for the Galactic bulge environment, we expect approximately 5.5 times the value. The encounter rates for other stellar environments are calculated and spheroidal dwarf galaxies and globular clusters encounter rates are estimated. The results show that in contrast with the solar neighborhood, close stellar encounters can play a significant role in the expected number of planets with continuous habitability in dense stellar environments. Another notable result shows that threatening stellar encounter rate follows the number density of stars, and is not strongly dependent of the region’s velocity dispersion. Further investigations are needed to study long-term multiple planetary systems and how they can change the overall expected value of continuously habitable planets.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have