Abstract

The squalene-hopene cyclase (SHC) is the only enzyme involved in the biosynthesis of hopanoid lipids that has been characterized on the genetic level. To investigate if additional genes involved in hopanoid biosynthesis are clustered with the shc gene, we cloned and analyzed the nucleotide sequences located immediately upstream of the shc genes from Zymomonas mobilis and Bradyrhizobium japonicum. In Z. mobilis, five open reading frames (ORFs, designated as hpnA–E) were detected in a close arrangement with the shc gene. In B. japonicum, three similarly arranged ORFs (corresponding to hpnC–E from Z. mobilis) were found. The deduced amino acid sequences of hpnC–E showed significant similarity (58–62%) in both bacteria. Similarities to enzymes of other terpenoid biosynthesis pathways (carotenoid and steroid biosynthesis) suggest that these ORFs encode proteins involved in the biosynthesis of hopanoids and their intermediates. Expression of hpnC to hpnE from Z. mobilis as well as expression of hpnC from B. japonicum in Escherichia coli led to the formation of the hopanoid precursor squalene. This indicates that hpnC encodes a squalene synthase. The two additional ORFs ( hpnA and hpnB) in Z. mobilis showed similarities to enzymes involved in the transfer and modification of sugars, indicating that they may code for enzymes involved in the biosynthesis of the complex, sugar-containing side chains of hopanoids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.