Abstract

Protein crystal growth is heavily dependant on provision of large amounts of very pure protein. For this reason, molecular cloning will be used increasingly to permit the study of proteins which cannot otherwise be prepared in sufficient amounts, or purity, or both. We have obtained a stable clone of the tryptophanyl-tRNA synthetase from Bacillus stearothermophilus that is active in enzyme production. This result entailed two unusual aspects of interest to those using molecular cloning for enzyme production and crystal growth: (1) The cloning steps required stringent selection procedures that may have selected an unspecified mutational event 5′ to the structural gene, because an as yet unknown flanking element of the B. stearothermophilus DNA produces a marked instability in plasmids containing the native DNA. (2) The homologous Escherichia coli trpS enzyme apparently interferes with crystallization of B. stearothermophilus tryptophanyl-tRNA synthetase purified from an E. coli strain. We have therefore deleted the E. coli chromosomal trpS gene by site-specific recombination of a recombinant lambda phage containing a marked deletion of the E. coli trpS gene. Enzyme prepared from this deletion strain crystallizes in a normal fashion, suitable for high-resolution X-ray crystallography studies. Crystallographic data sets from isomorphous crystals grown with native and cloned protein are identical to 3Åresolution to within normal scaling statistics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call