Abstract

A library of Bacillus subtilis DNA in lambda Charon 4A (Ferrari, E., Henner, D.J., and Hoch, J.A. (1981) J. Bacteriol. 146, 430-432) was screened by an immunological procedure for DNA sequences encoding aspartokinase II of B. subtilis, an enzyme composed of two nonidentical subunits arranged in an alpha 2 beta 2 structure (Moir, D., and Paulus, H. (1977a) J. Biol. Chem. 252, 4648-4654). A recombinant bacteriophage was identified that harbored an 18-kilobase B. subtilis DNA fragment containing the coding sequences for both aspartokinase subunits. The coding sequence for aspartokinase II was subcloned into bacterial plasmids. In response to transformation with the recombinant plasmids, Escherichia coli produced two polypeptides immunologically related to B. subtilis aspartokinase II with molecular weights (43,000 and 17,000) indistinguishable from those found in enzyme produced in B. subtilis. Peptide mapping by partial proteolysis confirmed the identity of the polypeptides produced by the transformed E. coli cells with the B. subtilis aspartokinase II subunits. The size of the cloned B. subtilis DNA fragment could be reduced to 2.9 kilobases by cleavage with PstI restriction endonuclease without affecting its ability to direct the synthesis of complete aspartokinase II subunits, irrespective of its orientation in the plasmid vector. Further subdivision by cleavage with BamHI restriction endonuclease resulted in the production of truncated aspartokinase subunits, each shortened by the same extent. This suggested that a single DNA sequence encoded both aspartokinase subunits and provided an explanation for the earlier observation that the smaller beta subunit of aspartokinase II was highly homologous or identical with the carboxyl-terminal portion of the alpha subunit (Moir, D., and Paulus, H. (1977b) J. Biol. Chem. 252, 4655-4661). A map of the gene for B. subtilis aspartokinase II is proposed in which the coding sequence for the smaller beta subunit overlaps in the same reading frame the promoter-distal portion of the coding sequence for the alpha subunit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.