Abstract
1. A degenerate polymerase chain reaction (PCR) homology screening procedure was applied to rat brain cDNA in order to identify novel genes belonging to the amiloride-sensitive Na+ channel and degenerin (NaC/DEG) family of ion channels. A single gene was identified that encodes a protein related to but clearly different from the already cloned members of the family (18-30 % amino acid sequence identity). Phylogenetic analysis linked this protein to the group of ligand-gated channels that includes the mammalian acid-sensing ion channels and the Phe-Met-Arg-Phe-amide (FMRFamide)-activated Na+ channel. 2. Expression of gain-of-function mutants after cRNA injection into Xenopus laevis oocytes or transient transfection of COS cells induced large constitutive currents. The activated channel was amiloride sensitive (IC50, 1.31 microM) and displayed a low conductance (9-10 pS) and a high selectivity for Na+ over K+ (ratio of the respective permeabilities, PNa+/PK+ >= 10), all of which are characteristic of NaC/DEG channel behaviour. 3. Northern blot and reverse transcriptase-polymerase chain reaction (RT-PCR) analysis revealed a predominant expression of its mRNA in the small intestine, the liver (including hepatocytes) and the brain. This channel has been called the brain-liver-intestine amiloride-sensitive Na+ channel (BLINaC). 4. Corresponding gain-of-function mutations in Caenorhabditis elegans degenerins are responsible for inherited neurodegeneration in the nematode. Besides the BLINaC physiological function that remains to be established, mutations in this novel mammalian degenerin-like channel might be of pathophysiological importance in inherited neurodegeneration and liver or intestinal pathologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.