Abstract

Sophorolipids produced by the non-pathogenic yeast Candida bombicola ATCC 22214 are glycolipid biosurfactants applied commercially as biodegradable and eco-friendly detergents. Their low cell toxicity, excellent wetting capability and antimicrobial activity attract the attention of high-value markets, such as the cosmetic and pharmaceutical industries. Although sophorolipid production yields have been increased by the optimization of fermentation parameters and feed sources, the biosynthetic pathway and genetic mechanism behind sophorolipid production still remains unclear. Here we identify a UDP-glucosyltransferase gene, UGTB1, with a key function in this economically important pathway. The protein shows sequence and structural homology to several bacterial glycosyltransferases involved in macrolide antibiotic synthesis. Deletion of UGTB1 in C. bombicola did not affect cell growth and resulted in a yeast producing glucolipids, thereby opening the route for in vivo production of these glycolipid intermediates. Activity assays on cell lysates confirmed that the identified gene is responsible for the second glucosylation step during sophorolipid production and illustrated that sophorolipid production in C. bombicola involves the stepwise action of two independent glucosyltransferases. The complete UGTB1 sequence data have been submitted to the GenBank database (http://www.ncbi.nlm.nih.gov) under Accession No. HM440974.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.