Abstract

Enzymes that lengthen the carbon chain of polyunsaturated fatty acids (PUFAs) are keys to the biosynthesis of the highly unsaturated fatty acids. Here we report on the molecular cloning and functional characterization of a cDNA encoding a putative elongase of very long-chain fatty acids (ELOVL), a critical enzyme that catalyses the elongation of fatty acids (FAs) including PUFAs. The full length cDNA of the fatty acyl elongase from the noble scallop Chlamys nobilis was isolated by Rapid Amplification of cDNA Ends (RACE). The amplified cDNAs encoded a putative open reading frame (ORF) of 307 amino acids that contained histidine box HXXHH motif conserved in all elongases. Phylogenetic analysis suggested that the putative elongase was placed in the same group with ELOVL2 and ELOVL5, which had been demonstrated to be critical enzymes participating in the biosynthesis of PUFAs in vertebrates. Heterologous expression in yeast Saccharomyces cerevisiae demonstrated that the ORF encoded an elongase with the ability to lengthen n−3 and n−6 PUFA substrates with chain lengths of C18 and C20, exhibiting similar substrate specificities to vertebrate ELOVL5. Moreover, the noble scallop elongase could lengthen monounsaturated fatty acids to low activity, but not saturated fatty acids. The interesting point was that this elongase converted n−6 PUFA substrates more efficiently than their homologous n−3 substrates, suggesting that n−6 PUFAs might have particular biological significance in C. nobilis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.