Abstract
We have studied the immunochemical properties of two major 3-methylcholanthrene inducible hamster liver cytochrome P450 isozymes, P450 MC1 and P450 MC4. Immunoblots using specific antibodies against P450 MC1 and P450 MC4 demonstrated that these two P450s were present in very low levels in control hamster livers and were greatly induced by 3-methylcholanthrene treatment. P450 MC1 was immunochemically different from P450 MC4, rat P450c and P450d, and rabbit LM 4. The immunorelated polypeptide to P450 MC1 was not present in the control or the 3-methylcholanthrene-treated rat liver microsomes, whereas it was present in two human liver microsomal preparations. On the other hand, P450 MC4 was immunochemically related to rat P450d and rabbit LM 4. The immunorelated polypeptide to P450 MC4 was present in the human and 3-methylcholanthrene-treated rat liver microsomes. We also isolated full-length cDNA clones encoding P450 MC1 and P450 MC4 mRNAs from a 3-methylcholanthrene-induced hamster liver cDNA library. The full-length cDNA clones of P450 MC1 and P450 MC4 contained 1771 and 1868 base pairs, which encoded polypeptides of 494 and 513 amino acids, respectively. RNA blot analysis revealed that the mRNAs for P450 MC1 and P450 MC4 were 2100 and 2600 bases in length, respectively. 3-Methylcholanthrene pretreatment increased the P450 MC1 mRNA level by 16-fold and the P450 MC4 mRNA level by 11-fold in the hamster livers. A comparison of the deduced amino acid sequences with other cytochrome P450s revealed that P450 MC1 was most similar to the mouse P450 15α with 75% sequence identity, whereas P450 MC4 shared 87% identity with the rat P450d or mouse P 3450. These results indicated that P450 MC1 was a unique member (CYP2A8) in the P450IIA subfamily, whereas P450 MC4 was the hamster P450IA2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.