Abstract

The biogenesis and maintenance of cellular organelles is of fundamental importance in all eukaryotic cells. One such organelle is the peroxisome. The establishment of a genetic system to study peroxisome biogenesis in the methylotrophic yeast Pichia pastoris has yielded many different complementation groups of peroxisomal assembly (pas) or peroxisome-deficient (per) mutants. Each appears to be deficient in functional peroxisomes. One of these mutants, pas5, has been characterized, complemented, and the gene sequenced. Ultrastructural studies show that normal peroxisomes are not present in pas5, but aberrant peroxisomal structures resembling "membranous ghosts" are frequently observed. The "peroxisome ghosts" appear to be induced and segregated to daughter cells normally. Biochemical fractionation analysis of organelles of the pas5 mutant reveals that peroxisomal matrix enzymes are induced normally but are found mostly in the cytosol. However, purification of peroxisome ghosts from the mutant shows that small amounts (< 5%) of matrix enzymes are imported. The PAS5 gene was cloned and found to encode a 127-kD protein, which contains a 200-amino acid-long region of homology with PAS1, NEM-sensitive factor (NSF), and other related ATPases. Weak homology to a yeast myosin was also observed. The gene is not essential for growth on glucose but is essential for growth on oleic acid and methanol. The role of PAS5 in peroxisome biogenesis is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call