Abstract
In vertebrates, muscles of the back (epaxial) and of the body wall and limbs (hypaxial) derive from precursor cells located in the dermomyotome of the somites. In this paper, we investigate the mediolateral regionalisation of epaxial and hypaxial muscle precursor cells during segmentation of the paraxial mesoderm and myotome formation, using mouse LaacZ/LacZ chimeras. We demonstrate that precursors of medial and lateral myotomes are clonally separated in the mouse somite, consistent with earlier studies in birds. This clonal separation occurs after segmentation of the paraxial mesoderm. We then show that myotome precursors are mediolaterally regionalised and that this regionalisation precedes clonal separation between medial and lateral precursors. Strikingly, the properties of myotome precursors are remarkably similar in the medial and lateral domains. Finally, detailed analysis of our clones demonstrates a direct spatial relationship between the myocytes in the myotome and their precursors in the dermomyotome, and earlier in the somite and presomitic mesoderm, refuting several models of myotome formation, based on permanent stem cell systems or extensive cell mingling. This progressive mediolateral regionalisation of the myotome at the cellular level correlates with progressive changes in gene expression in the dermomyotome and myotome.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have