Abstract

Four small oval populations and five large intensive populations of Rhododendron aureum growing at the alpine in Changbai Mountain (China) were studied in two types of habitat (in the tundra and in Betula ermanii forest). Identification and delimitation of genets were inferred from excavation in small populations and from amplified fragment length polymorphism (AFLP) markers by the standardized sampling design in large populations. Clonal architecture and clonal diversity were then estimated. For the four small populations, they were monoclonal, the spacer length (18.6 ± 5.6 in tundra, 29.7 ± 9.7 in Betula ermanii forest, P < 0.05) was shorter and branching intensity (136.7 ± 32.9 in tundra, 43.4 ± 12.3 in Betula ermanii forest, P < 0.05) was higher in the tundra than that in Betula ermanii forest. For the five large populations, they were composed of multiple genets with high level of clonal diversity (Simpson’s index D = 0.84, clonal richness R = 0.25, Fager's evenness E = 0.85); the spatial distribution of genets showed that the clonal growth strategy of R. aureum exhibits both guerilla and phalanx. Our results indicate that the clonal plasticity of R. aureum could enhance exploitation of resource heterogeneity and in turn greatly contribute to maintenance or improvement of fitness and the high clonal diversity of R. aureum increase the evolutionary rates to adapt the harsh alpine environment in Changbai Mountain.

Highlights

  • Plant survival in alpine landscapes is constantly challenged by the harsh and often unpredictable environmental conditions[1]

  • For R. aureum, few seedling establishment has been observed in Changbai Mountain [34], and we have found some small oval populations that may be monoclonal populations in the wild

  • In R. aureum, we have found genetic diversity even in populations consisting of a single clone, with variation that was proportional to the population diameter (Fig 2)

Read more

Summary

Introduction

Plant survival in alpine landscapes is constantly challenged by the harsh and often unpredictable environmental conditions[1]. Life cycles of alpine plants are threatened by the high uncertainty as to whether flowering and fruiting, germination and establishment can be successfully completed[2,3]. With increasing altitude and increasing latitude, perennial plants that reproduce clonally become more abundant[4]. In alpine and arctic areas, vegetative propagation plays an important role in reproduction, as more than 90% of species are clonal and can spread vegetatively by using organs such as rhizomes, stolons, or bulbils[3,5]. As clonal plants having the traits of resource storage, tight regulation of resource acquisition, and cycling and maintenance of dormant buds, which enable branching following death of apical meristems that help them to survive harsh climates and changing environmental conditions[6].

Objectives
Methods
Findings
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call