Abstract

Clonal diversity within plant populations is affected by factors that influence genet (clone) survival and seed recruitment, such as resource availability, disturbance, seed dispersal mechanism, propagule predation and the age of the population. Here we studied a population of Potamogeton pectinatus, a pseudo-annual aquatic macrophyte. Within populations reproduction appears to be mainly asexually through subterranean propagules (tubers), while recruitment via seeds is believed to be relatively unimportant. RAPD markers were used to analyse clonal diversity and genetic variation within the population. Ninety-seven genets were identified among 128 samples taken from eight plots. The proportion of distinguishable genets (0.76) and Simpson's diversity index (0.99) exhibited high levels of clonal diversity compared to other clonal plants. According to an analysis of molecular variance (amova) most genetic variation occurred between individuals within plots (93-97%) rather than between plots (8-3%). These results imply that sexual reproduction plays an unexpectedly important role within the population. Nevertheless, autocorrelation statistics revealed a spatial genetic structure resulting from clonal growth. In contrast to genetic variation, clonal diversity was affected by several ecological factors. Water depth and silt content had direct negative effects on clonal diversity. Tuber predation by Bewick's swans had an unexpected indirect negative effect on clonal diversity through reducing the tuber-bank biomass in spring, which on its turn was positively correlated to clonal diversity. The disturbance by swans, therefore, did not enhance seed recruitment and thus clonal diversity; on the contrary, heavily foraged areas are probably more prone to stochastic loss of genets leading to reduced clonal diversity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call