Abstract

Clonal growth is generally expected to have significant effects on the spatial genetic structure within populations. In this study, random amplified polymorphic DNA (RAPD) markers were used to reveal clonal and spatial genetic structure of four natural populations of Luohanguo ( Siraitia grosvenorii), an economic vine species endemic to South China. A total of 351 ramets were assigned to 76 distinct multi-locus genotypes (i.e. genets), with the G/ N varying from 0.121 to 0.350. No widespread genet was found across different populations. The clonal diversity ( D) and evenness ( E) ranged from 0.333 to 0.828 and from 0 to 0.741, respectively. While most genets consisted of fewer than five ramets, we observed some dominant genets that had much more (up to 69) ramets and spread over large areas. Spatial autocorrelation analyses revealed a spatial genetic structure (i.e. significant positive autocorrelation within 20 m and negative autocorrelation beyond 40 m) in one population, but not in other three populations with smaller population size. This study highlights the importance of clonal growth in shaping the spatial genetic structure in Luohanguo, which may have complex effects on the dynamics and evolution of its declining populations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call