Abstract

Computational techniques based on ranks of Hankel matrices is used to study the convergence to Arnold tongues. It appears that the process of convergence to the phaselocked mode is far from being trivial. The stable, the unstable and the manifold of nonasymptotic convergence intertwine in the parameter plane of the circle map. Pseudoranks of Hankel matrices carry important physical information about transient processes taking place in discrete nonlinear iterative maps. These pictures in the parameter plane are also beautiful from the aesthetical point of view.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.