Abstract

Fuzzy reliability analysis can be implemented using two discrete optimization maps in the processes of reliability and fuzzy analysis. Actually, the efficiency and robustness of the iterative reliability methods are two main factors in the fuzzy-based reliability analysis due to the huge computational burdens and unstable results. In the structural fuzzy reliability analysis, the first-order reliability method (FORM) using discrete nonlinear map can provide a C membership function. In this paper, a discrete nonlinear conjugate map is proposed using a relaxed-finite step size method for fuzzy structural reliability analysis, namely Fuzzy conjugate relaxed-finite step size method fuzzy CRS. A discrete conjugate map is stabilized using two adaptive factors to compute the relaxed factor and step size in FORM. The framework of the proposed fuzzy structural reliability method is established using two linked iterative discrete maps as an outer loop, which constructs the membership function of the response using alpha level set optimization based on genetic operator, and the inner loop, implemented for reliability analysis using proposed conjugate relaxed-finite step size method. The fuzzy CRS and fuzzy HL-RF methods are compared to evaluate the membership functions of five structural problems with highly nonlinear limit state functions. Results demonstrated that the fuzzy CRS method is computationally more efficient and is strongly more robust than the HL-RF for fuzzy-based reliability analysis of the nonlinear structural reliability problems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call