Abstract

In this paper, we propose a maze-routing-based clock tree routing algorithm integrated with buffer insertion, buffer sizing and topology generation that is able to consider general buffer insertion locations in order to achieve robust slew control. Buffer insertion along routing paths had been mostly avoided previously due to the difficulty to maintain low skew under such aggressive buffer insertion. We develop accurate timing analysis engine for delay and slew estimation and a balanced routing scheme for better skew reduction during clock tree synthesis. As a result, we can perform aggressive buffer insertion with buffer sizing and maintain accurate delay information and low skew. Experiments show that our synthesis results not only honor the hard slew constraints but also maintain reasonable skew.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.