Abstract

Cloaking of a circular cylindrical elastic inclusion embedded in a homogeneous linear isotropic elastic medium from antiplane elastic waves is studied. The transformation or change-of-variables method is used to determine the material properties of the cloak and the homogenization theory of composites is used to construct a multilayered cloak consisting of many bi-material cells. The large system of algebraic equations associated with this problem is solved by using the concept of multiple scattering with wave expansion coefficient matrices. Numerical results for cloaking of an elastic inclusion and a rigid inclusion are compared with the case of a cavity. It is found that while the cloaking patterns for the three cases are similar, the major difference is that standing waves are generated in the elastic inclusion and the multilayered cloak cannot prevent the motion inside the elastic inclusion, even though the cloak seems nearly perfect. Waves can penetrate into and cause vibrations inside the elastic inclusion, where the amplitude of standing waves depend on the material properties of the inclusion but are very much reduced when compared to the case when there is no cloak. For a prescribed mass density, the displacements inside the elastic cylinder decrease as the shear modulus increases. Moreover, the cloaking of the elastic inclusion over a range of wavenumbers is also investigated. There is significant low frequency scattering even if the cloak consists of a large number of layers. When the wavenumber increases, the multilayered cloak is not effective if the cloak consists of an insufficient number of layers. Resonance effects that occur in cloaking of elastic inclusions are also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call