Abstract

We address the long-standing question of the computational complexity of determining homology groups of simplicial complexes, a fundamental task in computational topology, posed by Kaibel and Pfetsch over twenty years ago. We show that decision problem is -hard and the exact counting version is -hard. In fact, we strengthen this by showing that the problems remains hard in the case of clique complexes, a family of simplicial complexes specified by a graph which is relevant to the problem of topological data analysis. The proof combines a number of techniques from Hamiltonian complexity and algebraic topology. As we discuss, a version of the problems satisfying a suitable promise and certain constraints is contained in and , respectively. This suggests that the seemingly classical problem may in fact be quantum mechanical. We discuss potential implications for the problem of quantum advantage in topological data analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.