Abstract

AimsCompared to primary breast sarcoma (BSs), radiotherapy-induced sarcoma (RIS) is a less frequent type of secondary breast sarcoma. Undifferentiated pleomorphic sarcoma (UPS) is an even rarer occurrence within the RIS category. This study aimed to present the clinicopathologic and molecular features of breast radiotherapy-induced UPS.MethodsA retrospective study was conducted at the Third Affiliated Hospital of Soochow University to analyze three patients with radiation-induced undifferentiated pleomorphic sarcoma (UPS) following breast cancer, spanning from 2006 to 2023. The clinical and pathological variables were extracted from the medical records, while immunohistochemistry was employed to analyze the immunophenotypes of these tumors. Genomic characteristics were assessed through DNA and RNA sequencing techniques. Another 15 cases from the literature were also reviewed to better characterize the tumor.ResultsThe affected areas encompass the chest wall and breasts, with an incubation period ranging from 6 to 17 years. The tumor cells exhibit pleomorphism and demonstrate a high degree of pathological mitosis. Notably, two cases displayed an accelerated disease progression, characterized by recurrent tumors and metastases occurring within short intervals of 48 and 7 months respectively subsequent to the initial diagnosis. The two prevailing identified genes were TP53 (2/3, 66.7%) and RB1 (1/3, 33.3%). Through analysis of somatic copy number variation (CNV), it was discovered that two oncogenes, MCL1 (1/3, 33.3%) and MYC (1/3, 33.3%), had experienced gains in CNV. The Tumor Mutational Burden (TMB) values for case 1, case 2, and case 3 were 5.9 mut/Mb, 1.0 mut/Mb, and 3.0 mut/Mb, respectively. Moreover, the analysis of RNA-NGS (next-generation sequencing) revealed the presence of a novel gene fusion, named COL3A1-GULP1, in case 2.ConclusionsBased on our thorough analysis of research findings and previous reports, it is evident that radiotherapy-induced UPS exhibits a highly diverse and frequently severe clinical and biological behavior. Identifying tumor formation using genome sequencing can help understand its biological behavior and determine personalized treatments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.