Abstract

BackgroundWireless, wearable, inertial motion sensor technology introduces new possibilities for monitoring spinal motion and pain in people during their daily activities of work, rest and play. There are many types of these wireless devices currently available but the precision in measurement and the magnitude of measurement error from such devices is often unknown. This study investigated the concurrent validity of one inertial motion sensor system (ViMove) for its ability to measure lumbar inclination motion, compared with the Vicon motion capture system.MethodsTo mimic the variability of movement patterns in a clinical population, a sample of 34 people were included – 18 with low back pain and 16 without low back pain. ViMove sensors were attached to each participant’s skin at spinal levels T12 and S2, and Vicon surface markers were attached to the ViMove sensors. Three repetitions of end-range flexion inclination, extension inclination and lateral flexion inclination to both sides while standing were measured by both systems concurrently with short rest periods in between. Measurement agreement through the whole movement range was analysed using a multilevel mixed-effects regression model to calculate the root mean squared errors and the limits of agreement were calculated using the Bland Altman method.ResultsWe calculated root mean squared errors (standard deviation) of 1.82° (±1.00°) in flexion inclination, 0.71° (±0.34°) in extension inclination, 0.77° (±0.24°) in right lateral flexion inclination and 0.98° (±0.69°) in left lateral flexion inclination. 95% limits of agreement ranged between -3.86° and 4.69° in flexion inclination, -2.15° and 1.91° in extension inclination, -2.37° and 2.05° in right lateral flexion inclination and -3.11° and 2.96° in left lateral flexion inclination.ConclusionsWe found a clinically acceptable level of agreement between these two methods for measuring standing lumbar inclination motion in these two cardinal movement planes. Further research should investigate the ViMove system’s ability to measure lumbar motion in more complex 3D functional movements and to measure changes of movement patterns related to treatment effects.

Highlights

  • Wireless, wearable, inertial motion sensor technology introduces new possibilities for monitoring spinal motion and pain in people during their daily activities of work, rest and play

  • Principal findings The aim of this study was to investigate the concurrent validity of ViMove sensors for measuring lumbar region inclination motion, using the Vicon measurement system as the reference standard

  • We consider the agreement between these systems to be clinically acceptable for measuring through range flexion inclination, extension inclination and lateral flexion inclination, with root mean squared errors less that 2°, average differences less than 0.5°, and 95% Limits of agreement (LOA) between 4.7° and -3.9°

Read more

Summary

Introduction

Wearable, inertial motion sensor technology introduces new possibilities for monitoring spinal motion and pain in people during their daily activities of work, rest and play. LBP is associated with movement changes such as reduced range of motion, decreased proprioception and slower movements when compared with people without LBP [2]. We have limited knowledge of lumbar movement patterns when people are active in everyday living, away from clinical or laboratory settings. Measuring lumbar motion in clinical settings includes observation, Fingertip to Floor Test, Schober’s Test or measurements taken by devices such as inclinometers. These methods are limited to only being able to measure a static position, typically at end range and they require a clinician to be present

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.