Abstract

BackgroundInterventions for low back pain (LBP) commonly target ‘dysfunctional’ or atypical lumbo-pelvic kinematics in the belief that correcting aberrant movement improves patients’ pain and activity outcomes. If atypical kinematic parameters and postures have a relationship to LBP, they could be expected to more prevalent in people with LBP compared to people without LBP (NoLBP). This exploratory study measured, defined and compared atypical kinematic parameters in people with and without LBP.MethodsWireless inertial motion and EMG sensors were used to measure lumbo-pelvic kinematics during standing trunk flexion (range of motion (ROM), timing, sequence coordination, and extensor muscle activation) and in sitting (relative sitting position, pelvic tilt range) in a sample of 126 of adults without LBP and 140 chronic LBP subjects. Atypical movement was defined using the 10th/90th centiles of the NoLBP group. Mean differences and prevalence rates for atypical movement were calculated. Dichotomised pain scores for ‘high-pain-on-bending’ and ‘high-pain-on-sitting’ were tested for their association with atypical kinematic variables.ResultsFor standing flexion, significant mean differences, after adjusting for age and gender factors, were seen for the LBP group with (i) reduced ROM (trunk flexion (NoLBP 111o, LBP 93o, p < .0001), lumbar flexion (NoLBP 52o, LBP 46o, p < .0001), pelvic flexion (NoLBP 59o, LBP 48o, p < .0001), (ii) greater extensor muscle activation for the LBP group (NoLBP 0.012, LBP 0.25 p < .0001), (iii) a greater delay in pelvic motion at the onset of flexion (NoLBP − 0.21 s; LBP − 0.36 s, p = 0.023), (iv) and longer movement duration for the LBP group (NoLBP 2.28 s; LBP 3.18 s, p < .0001). Atypical movement was significantly more prevalent in the LBP group for small trunk (× 5.4), lumbar (× 3.0) and pelvic ROM (× 3.9), low FRR (× 4.9), delayed pelvic motion at 20o flexion (× 2.9), and longer movement duration (× 4.7). No differences between groups were seen for any sitting parameters. High pain intensity was significantly associated with small lumbar ROM and pelvic ROM.ConclusionSignificant movement differences during flexion were seen in people with LBP, with a higher prevalence of small ROM, slower movement, delayed pelvic movement and greater lumbar extensor muscle activation but without differences for any sitting parameter.

Highlights

  • Interventions for low back pain (LBP) commonly target ‘dysfunctional’ or atypical lumbo-pelvic kinematics in the belief that correcting aberrant movement improves patients’ pain and activity outcomes

  • For the LBP group, the mean pain score on a 0–10 scale was 5.3 (1.5) and activity limitation (RMDQ-24 transformed to a 0–100 scale) was 39 (21)

  • For most atypical kinematic parameters, there was no relationship with high pain scores during flexion or sitting, with the exception of small lumbar and pelvic range of movement (ROM) being associated with a high score on pain on forward bending

Read more

Summary

Introduction

Interventions for low back pain (LBP) commonly target ‘dysfunctional’ or atypical lumbo-pelvic kinematics in the belief that correcting aberrant movement improves patients’ pain and activity outcomes. There is some evidence that interventions designed to modify movement behaviour are associated with improvements to pain and activity limitation in chronic LBP [1, 2] These studies have typically quantified changes to pain and activity limitation but not changes to movement qualities, so the relationship between change in movement behaviour and changes in pain and function is not clear. Inertial motion sensors are capable of providing detailed, precise kinematic information that is not measured by visual observation or through basic measurement tools, such as goniometers or flexible rulers. This ‘higher definition’ information provides a detailed picture of the magnitude, regional contributions and ‘quality’ of movement. If kinematic parameters have a relationship to LBP, causal or consequential, they should be more prevalent in people with LBP than in those without LBP, even if not all people with LBP have the same movement characteristics

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call