Abstract

Background/Aim. High-grade glioma (HGG) is an interstitial cell-derived primary tumor of the nervous system. The current guidelines for the diagnosis and treatment of glioma recommend the maximum safe range of tumor resection for treatment methods. Adjuvant concurrent chemoradiotherapy is recommended after surgery, followed by six cycles of single-drug chemotherapy, temozolomide. Evaluation of the early efficacy of concurrent chemoradiotherapy after HGG surgery, especially for patients with a high risk of recurrence, is a crucial step in enhancing the treatment efficiency for patients diagnosed with HGG. In this study, we investigated the clinical utility of magnetic resonance (MR) spectroscopy (MRS) in assessing the early curing impact of concurrent chemoradiotherapy following HGG surgery. Methods. A total of 50 patients with incomplete resection or suspected residual postoperative HGG, treated in the radiotherapy department of our hospital between January 2016 and June 2021, were selected for routine concurrent chemoradiotherapy. Conventional MR imaging and MRS were performed one week prior to treatment and one month after treatment to assess changes in specific brain metabolites. All 50 patients were followed up for 6 to 12 months. Based on the follow-up results, the patients were divided into two groups: the tumor recurrence group and the tumor suppression group. One month after the end of the treatment, the differences in levels of brain metabolites between the two groups were analyzed using MRS. Results. The levels of N-acetylaspartate (NAA) and creatine (Cr) increased after radiotherapy, while choline (Cho) peak value, and Cho/Cr, NAA/Cr, and Cho/NAA ratios decreased compared to pre-treatment levels. There were statistically significant differences in the NAA peak value, and Cho/Cr, and Cho/NAA ratios in the tumor enhancement area before and after treatment (p < 0.05). There were also statistically significant differences in Cho/Cr ratio in the peritumoral edema area before and after treatment (p < 0.05). Conclusion. After concurrent chemoradiotherapy, MRS can be used to detect early metabolic changes in the tumor enhancement and peritumoral edema areas of HGG.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.