Abstract
BackgroundThe detection of renal cell carcinoma (RCC) has been rising due to the enhanced utilization of cross-sectional imaging and incidentally discovered lesions with adverse pathology demonstrate potential for metastasis. The purpose of our study was to determine the clinical and multiparametric dynamic contrast-enhanced magnetic resonance imaging (CEMRI) associated independent predictors of adverse pathology for cT1/2 RCC and develop the predictive model.MethodsWe recruited 105 cT1/2 RCC patients between 2018 and 2022, all of whom underwent preoperative CEMRI and had complete clinicopathological data. Adverse pathology was defined as RCC patients with nuclear grade III-IV; pT3a upstage; type II papillary RCC, collecting duct or renal medullary carcinoma, unclassified RCC; sarcomatoid/rhabdoid features. The qualitative and quantitative CEMRI parameters were independently reviewed by two radiologists. Univariate and multivariate binary logistic regression analyses were utilized to determine the independent predictors of adverse pathology for cT1/2 RCC and construct the predictive model. The receiver operating characteristic (ROC) curve, confusion matrix, calibration plot, and decision curve analysis (DCA) were conducted to compare the diagnostic performance of different predictive models. The individual risk scores and linear predicted probabilities were calculated for risk stratification, and the Kaplan–Meier curve and log-rank tests were used for survival analysis.ResultsOverall, 45 patients were pathologically confirmed as RCC with adverse pathology. Clinical characteristics, including gender, and CEMRI parameters, including RENAL score, tumor margin irregularity, necrosis, and tumor apparent diffusion coefficient (ADC) value were identified as independent predictors of adverse pathology for cT1/2 RCC. The clinical-CEMRI predictive model yielded an area under the curve (AUC) of the ROC curve of 0.907, which outperformed the clinical model or CEMRI signature model alone. Good calibration, better clinical usefulness, excellent risk stratification ability of adverse pathology and prognosis were also achieved for the clinical-CEMRI predictive model.ConclusionsThe proposed clinical-CEMRI predictive model offers the potential for preoperative prediction of adverse pathology for cT1/2 RCC. With the ability to forecast adverse pathology, the predictive model could significantly benefit patients and clinicians alike by providing enhanced guidance for treatment planning and decision-making.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have