Abstract

Background Macrophages are important immune cells involved in Mycobacterium tuberculosis (M.tb) infection. To further investigate the degree of disease development in patients with spinal tuberculosis (TB), we conducted research on macrophage polarization. Methods Thirty-six patients with spinal TB and twenty-five healthy controls were enrolled in this study. The specific morphology of tuberculous granuloma in spinal tissue was observed by hematoxylin-eosin (H&E) staining. The presence and distribution of bacilli were observed by Ziehl-Neelsen (ZN) staining. Macrophage-specific molecule CD68 was detected by immunohistochemistry (IHC). M1 macrophages play a proinflammatory role, including the specific molecule nitric oxide synthase (iNOS) and the related cytokine tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ). M2 macrophages exert anti-inflammatory effects, including the specific molecule CD163 and related cytokine interleukin-10 (IL-10). The above markers were all detected by quantitative real-time PCR (RT-PCR), enzyme-linked immunosorbent assay (ELISA), and IHC. Results Typical tuberculous granuloma was observed in the HE staining of patients with spinal TB. ZN staining showed positive expression of Ag85B around the caseous necrosis tissue and Langerhans multinucleated giant cells. At the same time, IHC results indicated that CD68, iNOS, CD163, IL-10, TNF-α, and IFN-γ were expressed around the tuberculous granuloma, and their levels were obviously higher in close tissue than in the distant tissue. RT-PCR and ELISA results indicated that IL-10, TNF-α, and IFN-γ levels of TB patients were also higher than those of the healthy controls. Conclusion The report here highlights that two types of macrophage polarization (M1 and M2) are present in the tissues and peripheral blood of patients with spinal TB. Macrophages also play proinflammatory and anti-inflammatory roles. Macrophage polarization is involved in spinal TB infection.

Highlights

  • Mycobacterium tuberculosis (M.tb) is a type of intracellular parasitic bacteria that causes tuberculosis (TB)

  • Samples were taken from postoperative lesions, distant paraspinal cartilage tissue, and connective tissue of spinal TB patients treated in the spine surgery department of two general hospitals in Urumqi, Xinjiang, from Jan 2017 to Dec 2018, and peripheral blood was collected at the same time

  • The acid-fast bacilli were slender, red-stained, nonrefractive, and slightly curved, and they were distributed in caseous necrosis or inside the macrophages (Figure 1(a))

Read more

Summary

Introduction

Mycobacterium tuberculosis (M.tb) is a type of intracellular parasitic bacteria that causes tuberculosis (TB). The specific morphology of tuberculous granuloma in spinal tissue was observed by hematoxylin-eosin (H&E) staining. M1 macrophages play a proinflammatory role, including the specific molecule nitric oxide synthase (iNOS) and the related cytokine tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ). Typical tuberculous granuloma was observed in the HE staining of patients with spinal TB. IHC results indicated that CD68, iNOS, CD163, IL-10, TNF-α, and IFN-γ were expressed around the tuberculous granuloma, and their levels were obviously higher in close tissue than in the distant tissue. RT-PCR and ELISA results indicated that IL-10, TNF-α, and IFN-γ levels of TB patients were higher than those of the healthy controls. The report here highlights that two types of macrophage polarization (M1 and M2) are present in the tissues and peripheral blood of patients with spinal TB.

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.