Abstract
Elizabethkingia anophelis has recently emerged as a cause of life-threatening infections in humans. We aimed to investigate the clinical and molecular characteristics of E. anophelis. A clinical microbiology laboratory database was searched to identify patients with Elizabethkingia infections between 2005 and 2016. Isolates were re-identified and their species were confirmed using 16S rRNA gene sequencing. Patients with E. anophelis infections were included in this study. Clinical information, antimicrobial susceptibility and mutations in DNA gyrase and topoisomerase IV were analysed. A total of 67 patients were identified to have E. anophelis infections, including 47 men and 20 women, with a median age of 61 years. Comorbidity was identified in 85.1% of the patients. Among the 67 E. anophelis isolates, 40 (59.7%) were isolated from blood. The case fatality rate was 28.4%. Inappropriate empirical antimicrobial therapy was an independent risk factor for mortality (adjusted OR = 10.01; 95% CI = 1.20-83.76; P = 0.034). The isolates were 'not susceptible' to multiple antibiotics. All the isolates were susceptible to minocycline. Susceptibilities to ciprofloxacin and levofloxacin were 4.5% and 58.2%, respectively. Mutations in DNA gyrase subunit A were identified in 11 isolates that exhibited high-level fluoroquinolone resistance. Minocycline has the potential to be the drug of choice in patients with E. anophelis infections. Additional investigations are needed to determine the optimal antimicrobial agents to treat this life-threatening infection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.