Abstract
This study aimed to investigate the clinical implications and prognostic value of artificial intelligence (AI)-based results for chest radiographs (CXR) in coronavirus disease 2019 (COVID-19) patients. Patients who were admitted due to COVID-19 from September 2021 to March 2022 were retrospectively included. A commercial AI-based software was used to assess CXR data for consolidation and pleural effusion scores. Clinical data, including laboratory results, were analyzed for possible prognostic factors. Total O2 supply period, the last SpO2 result, and deterioration were evaluated as prognostic indicators of treatment outcome. Generalized linear mixed model and regression tests were used to examine the prognostic value of CXR results. Among a total of 228 patients (mean 59.9 ± 18.8 years old), consolidation scores had a significant association with erythrocyte sedimentation rate and C-reactive protein changes, and initial consolidation scores were associated with the last SpO2 result (estimate -0.018, p = 0.024). All consolidation scores during admission showed significant association with the total O2 supply period and the last SpO2 result. Early changing degree of consolidation score showed an association with deterioration (odds ratio 1.017, 95% confidence interval 1.005-1.03). In conclusion, AI-based CXR results for consolidation have potential prognostic value for predicting treatment outcomes in COVID-19 patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.