Abstract

High reproducibility of volumetric measurements is an important prerequisite for follow-up of small lung nodules in order to differentiate malignant from benign lesions in a lung cancer screening setting. This study was aimed to evaluate the measurement reproducibility of a new software tool for pulmonary nodule volumetry. In an ongoing study, 147 pulmonary nodules (size 1.6-17.5 mm) were examined with low-dose multidetector CT (Siemens Somatom Volume Zoom, 120 kVp, 20 mAs, detector collimation 4x1 mm, normalized pitch 1.75, slice thickness 1.25 mm, reconstruction increment 0.8 mm). Two consecutive low-dose scans covering the whole lung volume were performed within a few minutes. Between both scans, patients were asked to leave the CT scanner, and the second scan was planned independently from the first one. For all visually detected pulmonary nodules with a diameter &lt;20 mm nodule volume was determined on both scans using a software prototype containing segmentation and volumetry algorithms. Results from both scans were compared. Nodule volume differences were determined as difference between the first and second measurement and ranged from 169 to 87%. The performance of the diagnostic test was measured using ROC analysis. For the detection of a volume doubling the area under curve (A<SUB>z</SUB>) was 0.98, for a growth of 50% the A<SUB>z</SUB> was 0.89. Further refinement of the segmentation algorithm should lead to more consistent measurements in ill-defined nodules. In conclusion, volumetric measurement of pulmonary nodules in multislice CT data sets is a reliable tool for the detection of growth in small pulmonary nodules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call