Abstract

BackgroundThe concept of periodontal regeneration has been revolutionised since the introduction of growth factors and bioactive bone substitutes which ensures optimal regeneration of the diseased periodontium. The aim of the present study was to evaluate the efficacy of Amniotic membrane + Biphasic Calcium phosphate as compared to Collagen membrane + Biphasic Calcium phosphate for the management of periodontal intrabony defects.Methods50 systemically healthy patients with localised moderate to severe periodontitis, sites which had a Probing Pocket Depth (PPD) ≥ 6 mm and an intrabony component of ≥ 3 mm as detected on Intra oral periapical radiographs (IOPAR) and bone sounding were recruited based on specific inclusion and exclusion criteria. They were randomly allocated by computer generated tables to Collagen membrane + Biphasic Calcium phosphate and Amniotic membrane + Biphasic Calcium phosphate groups. The amount of bone fill and changes in Probing Pocket Depth, Clinical Attachment Level were measured at baseline and six months.ResultsThe results of the present study showed a mean reduction in the PPD of 2.89 ± 0.69 mm in the Collagen membrane + Biphasic Calcium phosphate group and 2.95 ± 0.57 mm in the Amniotic membrane + Biphasic Calcium phosphate group and CAL gain of 2.60 ± 1.43 mm in Collagen membrane + Biphasic Calcium phosphate group 3.18 ± 1.13 mm in the Amniotic membrane + Biphasic Calcium phosphate group at 6 months follow-up with no statistical significance between the groups. In terms of Defect resolution, 98.62 ± 6.51 % was achieved in Collagen membrane + Biphasic Calcium phosphate group and 98.25 ± 7.21 % in Amniotic membrane + Biphasic Calcium phosphate group.ConclusionsWithin the limitations of the present study, it can be concluded that AM can be used as a barrier membrane, in conjunction with Biphasic calcium phosphate, and provides comparable results to Collagen membrane with Biphasic calcium phosphate when used in the management of periodontal intrabony defects.

Highlights

  • The concept of periodontal regeneration has been revolutionised since the introduction of growth factors and bioactive bone substitutes which ensures optimal regeneration of the diseased periodontium

  • The patients were distributed within the Amniotic Membrane (AM) + Biphasic Calcium Phosphate (BiCP) and Collagen Membrane (CM) + BiCP groups in terms of demographic characteristics and clinical parameters assessed at baseline (Probing depth/ Clinical Attachment Level and Defect angle) and distribution of the defect walls within AM + BiCP and CM + BiCP (Table 1)

  • The results of the present study showed a mean reduction in the Probing Pocket Depth (PPD) of 2.89 ± 0.69 mm in the CM + BiCP group and 2.95 ± 0.57 mm in the AM + BiCP group and Clinical Attachment Level (CAL) gain of 2.60 ± 1.43 mm in CM + BiCP group, 3.18 ± 1.13 mm in the AM + BiCP group at 6 months follow-up with no statistical significance between the groups

Read more

Summary

Introduction

The concept of periodontal regeneration has been revolutionised since the introduction of growth factors and bioactive bone substitutes which ensures optimal regeneration of the diseased periodontium. Anton Sculean, in 2017 put forth clinical protocols, which have shown to enhance periodontal regeneration and clinical outcomes in periodontal intrabony and class II furcation defects. These include: (a) Use of Enamel Matrix Proteins (b) Guided Tissue Regeneration (c) Use of bone grafts enriched with growth factors (Or) Combination therapy [2]. The primary outcomes in the treatment of intrabony defects achieved by guided tissue regeneration are (i) increase in functional tooth support (clinical attachment and bone levels); (ii) reduction in pocket depth; and (iii) minimal gingival recession [4]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call