Abstract

Processing of bone allografts with strong acids and γ-sterilization results in decreased biomechanical properties and reduction in osteogenecity and osteoconductivity. High hydrostatic pressure (HHP) treatment could be a gentle alternative to processing techniques usually applied. HHP is known to induce devitalization of cancellous bone while preserving biomechanical stability and molecules that induce cell differentiation. Here, a specific HHP protocol for devitalization of cancellous bone was applied to rabbit femoral bone. Allogeneic bone cylinders were subsequently implanted into a defect in the lateral condyles of rabbit femora and were compared to autologous bone grafts. Analysis of bone integration 4 and 12 weeks postoperatively revealed no differences between autografts and HHP-treated allografts regarding the expression of genes characteristic for bone remodeling, showing expression niveous comparable to original bone cylinder. Furthermore, biomechanical properties were evaluated 12 weeks postoperatively. Autografts and HHP-treated allografts both showed a yield strength ranging between 2 and 2.5 MPa and an average bone mass density of 250 mg/cm2. Furthermore, histological analysis of the region of interest revealed a rate of 5 to 10% BPM-2 and approximately 40% osteocalcin-positive staining, with no marked differences between allografts and autografts demonstrating comparable matrix deposition in the graft region. A suitable graft integrity was pointed out by μCT imaging in both groups, supporting the biomechanical data. In summary, the integrity of HHP-treated cancellous bone allografts showed similar results to untreated autografts. Hence, HHP treatment may represent a gentle and effective alternative to existing processing techniques for bone allografts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.