Abstract

Acceptance testing and quality assurance (QA) of computed tomography (CT) scans are of great importance to ensure the appropriate performance of the systems. However, current standards and guidelines do not include a dedicated QA program for spectral photon-counting CT (SPCCT), nor adapted tolerancelevels. To evaluate the technical performance, in terms of image quality and radiation dose, of the first point-of-care SPCCT for the upper extremities (MARS Extremity 5X120, MARS Bioimaging Ltd., Christchurch, New Zealand) and to establish a comprehensive QAprogram. The specific dimensions of the scanner with a 125mm diameter gantry and a small voxel size of 0.1×0.1×0.1mm3 require the use of suitable phantoms and evaluation techniques. Indicators such as CT number accuracy, image noise, uniformity, and slice thickness were assessed to characterize the image quality. The in-plane and longitudinal spatial resolutions were evaluated by means of the modulation transfer function (MTF). Noise power spectra (NPS) were calculated to further evaluate the image noise. Material identification capabilities were assessed using clinically relevant high-Z materials (iodine, gold, gadolinium, and calcium). A 100-mm diameter CTDI-like phantom was used to measure the dose indices. A complete radiation survey was carried out to measure the radiation exposure at different points around thescanner. The proposed QA program is based on international and local recommendations as well as practical experience. It includes standardised CT tests and SPCCT-specific methods. Additional methodologies to further assess the system performance are also presented. Tolerance levels are discussed and revised when appropriate. Both in-plane and longitudinal high spatial resolutions were evidenced by the MTF measurements with 1.8lp· mm-1 and 5.0lp· mm-1 at 10%, respectively. The calculated effective slice thickness ranged between 0.15and 0.16mm for the five energy bins and for a reconstructed voxel size of 0.1×0.1×0.1mm3 . Reference values of the linear attenuation coefficient of water have been calculated and used to assess the CT number uniformity of water. Evaluation of the CT number accuracy and stability of various clinically relevant materials showed excellent spectral correlation and linearity between HU values and concentrations (r2 > 0.99). The NPS showed less noise correlation between slices than within transverse slice, as well as a systematic increase at low spatial frequencies. The volume CT dose index (CTDI ) for a custom-made 100mm diameter phantom was 9.32mGy. Radiation measurements around the scanner showed that it is completely shielded except for the access port, and that no additional protective measures are necessary for thepatient. A routine QA framework for SPCCT systems has been proposed. Image quality and radiation dose were assessed using newly designed phantoms, relevant metrics, and automated algorithms. Baseline values were established and tolerance levels discussed for the MARS SPCCT scanner based on collected data and internationalrecommendations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.