Abstract

Acute respiratory infections (ARIs) are common in children. We developed machine learning models to predict pediatric ARI pathogens at admission. We included hospitalized children with respiratory infections between 2010 and 2018. Clinical features were collected within 24h of admission to construct models. The outcome of interest was the prediction of 6 common respiratory pathogens, including adenovirus, influenza virus types A and B, parainfluenza virus (PIV), respiratory syncytial virus (RSV), and Mycoplasma pneumoniae (MP). Model performance was estimated using area under the receiver operating characteristic curve (AUROC). Feature importance was measured using Shapley Additive exPlanation (SHAP) values. A total of 12,694 admissions were included. Models trained with 9 features (age, event pattern, fever, C-reactive protein, white blood cell count, platelet count, lymphocyte ratio, peak temperature, peak heart rate) achieved the best performance (AUROC: MP 0.87, 95% CI 0.83-0.90; RSV 0.84, 95% CI 0.82-0.86; adenovirus 0.81, 95% CI 0.77-0.84; influenza A 0.77, 95% CI 0.73-0.80; influenza B 0.70, 95% CI 0.65-0.75; PIV 0.73, 95% CI 0.69-0.77). Age was the most important feature to predict MP, RSV and PIV infections. Event patterns were useful for influenza virus prediction, and C-reactive protein had the highest SHAP value for adenovirus infections. We demonstrate how artificial intelligence can assist clinicians identify potential pathogens associated with pediatric ARIs upon admission. Our models provide explainable results that could help optimize the use of diagnostic testing. Integrating our models into clinical workflows may lead to improved patient outcomes and reduce unnecessary medical costs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.